Evaluation of carbon flux and substrate selection through alternate pathways involving the citric acid cycle of the heart by 13C NMR spectroscopy.

نویسندگان

  • C R Malloy
  • A D Sherry
  • F M Jeffrey
چکیده

A previous 13C NMR technique (Malloy, C. R., Sherry, A.D., and Jeffrey, F.M.H. (1987) FEBS Lett. 212, 58-62) for measuring the relative flux of molecules through the oxidative versus anaplerotic pathways involving the citric acid cycle of the rat heart has been extended to include a complete analysis of the entire glutamate 13C spectrum. Although still simple in practice, this more sophisticated model allows an evaluation of 13C fractional enrichment of molecules entering both the oxidative and anaplerotic pathways under steady-state conditions. The method was used to analyze 13C NMR spectra of intact hearts or their acid extracts during utilization of 13C-enriched pyruvate, propionate, acetate, or various combinations thereof. [2-13C]Pyruvate was used to prove that steady-state flux of pyruvate through pyruvate carboxylase is significant during co-perfusion of pyruvate and acetate, and we demonstrate for the first time that a nine-line 13C multiplet may be detected in an intact, beating heart. Acetate or pyruvate alone provided about 86% of the acetyl-CoA; in combination, about 65% of the acetyl-CoA was derived from acetate, about 30% was derived from pyruvate, and the remainder from endogenous sources. Propionate reduced the contribution of exogenous acetate to acetyl-CoA to 77% and also reduced the oxidation of endogenous substrates. Equations are presented which allow this same analysis on multiply labeled substrates, making this technique extremely powerful for the evaluation of substrate selection and relative metabolic flux through anaplerotic and oxidative pathways in the intact heart.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indexing tricarboxylic acid cycle flux in intact hearts by carbon-13 nuclear magnetic resonance.

Although the tricarboxylic acid (TCA) cycle is the prime means of carbon metabolism for energy generation in normal myocardium, the noninvasive quantification of TCA cycle flux in intact cardiac tissues is difficult. A novel approach for estimating citric acid cycle flux using 13C nuclear magnetic resonance (NMR) is presented and evaluated experimentally by comparison with measured myocardial o...

متن کامل

Measurement of hepatic glucose output, krebs cycle, and gluconeogenic fluxes by NMR analysis of a single plasma glucose sample.

13C and 1H NMR spectroscopy of plasma glucose was used to resolve the isotopomer contributions from tracer levels of [1,6-13C2]glucose, a novel tracer of glucose carbon skeleton turnover, and [U-13C]propionate, a tracer of hepatic citric acid cycle metabolism. This allowed simultaneous measurements of hepatic glucose production and citric acid cycle fluxes from the NMR analysis of a single plas...

متن کامل

Metabolic Flux , Transport Activity , and Subcellular Communication in Intact Hearts from Dynamic 13 C NMR

The control of oxidative metabolism was studied using carbon-13 (13C) nuclear magnetic resonance (NMR) spectroscopy to determine the ratelimiting steps in 13C labeling of glutamate. 13 C NMR spectra were acquired from isolated rabbit hearts perfused with either 2.5 mM [213C] acetate or 2.5 mM [213 C] butyrate, and with or without KCl arrest. The tricarboxylic acid (TCA) cycle flux and the inter...

متن کامل

Improved estimation of anaplerosis in heart using 13C NMR.

Anaplerotic enzymes, such as pyruvate carboxylase or malic enzyme, catalyze reactions that fill up the pools of the citric acid cycle (CAC), thereby increasing the total mass of CAC intermediates. Relative anaplerosis ( y) denotes the ratio of anaplerotic flux to the flux catalyzed by citrate synthase. We examine conventional methods [C. R. Malloy, A. D. Sherry, and F. M. H. Jeffrey. J. Biol. C...

متن کامل

Thyroid hormone controls myocardial substrate metabolism through nuclear receptor-mediated and rapid posttranscriptional mechanisms.

Thyroid hormone regulates metabolism through transcriptional and posttranscriptional mechanisms. The integration of these mechanisms in heart is poorly understood. Therefore, we investigated control of substrate flux into the citric acid cycle (CAC) by thyroid hormone using retrogradely perfused isolated hearts (n = 20) from control (C) and age-matched thyroidectomized rats (T). We determined s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 263 15  شماره 

صفحات  -

تاریخ انتشار 1988